mirror of
https://github.com/kubernetes-sigs/descheduler.git
synced 2026-01-28 06:29:29 +01:00
120 lines
3.1 KiB
Go
120 lines
3.1 KiB
Go
// Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
|
|
// Use of this source code is governed by a MIT license found in the LICENSE file.
|
|
|
|
package codec
|
|
|
|
// All non-std package dependencies live in this file,
|
|
// so porting to different environment is easy (just update functions).
|
|
|
|
func pruneSignExt(v []byte, pos bool) (n int) {
|
|
if len(v) < 2 {
|
|
} else if pos && v[0] == 0 {
|
|
for ; v[n] == 0 && n+1 < len(v) && (v[n+1]&(1<<7) == 0); n++ {
|
|
}
|
|
} else if !pos && v[0] == 0xff {
|
|
for ; v[n] == 0xff && n+1 < len(v) && (v[n+1]&(1<<7) != 0); n++ {
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// validate that this function is correct ...
|
|
// culled from OGRE (Object-Oriented Graphics Rendering Engine)
|
|
// function: halfToFloatI (http://stderr.org/doc/ogre-doc/api/OgreBitwise_8h-source.html)
|
|
func halfFloatToFloatBits(yy uint16) (d uint32) {
|
|
y := uint32(yy)
|
|
s := (y >> 15) & 0x01
|
|
e := (y >> 10) & 0x1f
|
|
m := y & 0x03ff
|
|
|
|
if e == 0 {
|
|
if m == 0 { // plu or minus 0
|
|
return s << 31
|
|
}
|
|
// Denormalized number -- renormalize it
|
|
for (m & 0x00000400) == 0 {
|
|
m <<= 1
|
|
e -= 1
|
|
}
|
|
e += 1
|
|
const zz uint32 = 0x0400
|
|
m &= ^zz
|
|
} else if e == 31 {
|
|
if m == 0 { // Inf
|
|
return (s << 31) | 0x7f800000
|
|
}
|
|
return (s << 31) | 0x7f800000 | (m << 13) // NaN
|
|
}
|
|
e = e + (127 - 15)
|
|
m = m << 13
|
|
return (s << 31) | (e << 23) | m
|
|
}
|
|
|
|
// GrowCap will return a new capacity for a slice, given the following:
|
|
// - oldCap: current capacity
|
|
// - unit: in-memory size of an element
|
|
// - num: number of elements to add
|
|
func growCap(oldCap, unit, num int) (newCap int) {
|
|
// appendslice logic (if cap < 1024, *2, else *1.25):
|
|
// leads to many copy calls, especially when copying bytes.
|
|
// bytes.Buffer model (2*cap + n): much better for bytes.
|
|
// smarter way is to take the byte-size of the appended element(type) into account
|
|
|
|
// maintain 2 thresholds:
|
|
// t1: if cap <= t1, newcap = 2x
|
|
// t2: if cap <= t2, newcap = 1.5x
|
|
// else newcap = 1.25x
|
|
//
|
|
// t1, t2 >= 1024 always.
|
|
// This means that, if unit size >= 16, then always do 2x or 1.25x (ie t1, t2, t3 are all same)
|
|
//
|
|
// With this, appending for bytes increase by:
|
|
// 100% up to 4K
|
|
// 75% up to 16K
|
|
// 25% beyond that
|
|
|
|
// unit can be 0 e.g. for struct{}{}; handle that appropriately
|
|
if unit <= 0 {
|
|
if uint64(^uint(0)) == ^uint64(0) { // 64-bit
|
|
var maxInt64 uint64 = 1<<63 - 1 // prevent failure with overflow int on 32-bit (386)
|
|
return int(maxInt64) // math.MaxInt64
|
|
}
|
|
return 1<<31 - 1 // math.MaxInt32
|
|
}
|
|
|
|
// handle if num < 0, cap=0, etc.
|
|
|
|
var t1, t2 int // thresholds
|
|
if unit <= 4 {
|
|
t1, t2 = 4*1024, 16*1024
|
|
} else if unit <= 16 {
|
|
t1, t2 = unit*1*1024, unit*4*1024
|
|
} else {
|
|
t1, t2 = 1024, 1024
|
|
}
|
|
|
|
if oldCap <= 0 {
|
|
newCap = 2
|
|
} else if oldCap <= t1 { // [0,t1]
|
|
newCap = oldCap * 8 / 4
|
|
} else if oldCap <= t2 { // (t1,t2]
|
|
newCap = oldCap * 6 / 4
|
|
} else { // (t2,infinity]
|
|
newCap = oldCap * 5 / 4
|
|
}
|
|
|
|
if num > 0 && newCap < num+oldCap {
|
|
newCap = num + oldCap
|
|
}
|
|
|
|
// ensure newCap takes multiples of a cache line (size is a multiple of 64)
|
|
t1 = newCap * unit
|
|
t2 = t1 % 64
|
|
if t2 != 0 {
|
|
t1 += 64 - t2
|
|
newCap = t1 / unit
|
|
}
|
|
|
|
return
|
|
}
|